Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Altenbach, Holm; Eremeyev, Victor A (Ed.)We propose an analytical approach to solving nonlocal generalizations of the Euler–Bernoulli beam. Specifically, we consider a version of the governing equation recently derived under the theory of peridynamics. We focus on the clamped–clamped case, employing the natural eigenfunctions of the fourth derivative subject to these boundary conditions. Static solutions under different loading conditions are obtained as series in these eigenfunctions. To demonstrate the utility of our proposed approach, we contrast the series solution in terms of fourth-order eigenfunctions to the previously obtained Fourier sine series solution. Our findings reveal that the series in fourth-order eigenfunctions achieve a given error tolerance (with respect to a reference solution) with ten times fewer terms than the sine series. The high level of accuracy of the fourth-order eigenfunction expansion is due to the fact that its expansion coefficients decay rapidly with the number of terms in the series, one order faster than the Fourier series in our examples.more » « lessFree, publicly-accessible full text available June 18, 2026
-
A linear sixth-order partial differential equation (PDE) of “parabolic” type describes the dynamics of thin liquid films beneath surfaces with elastic bending resistance when deflections from the equilibrium film height are small. On a finite domain, the associated sixth-order eigenvalue problem is self-adjoint for the boundary conditions corresponding to a thin film in a closed trough, and the eigenfunctions form a complete orthonormal set. Using these eigenfunctions, we derive the Green’s function for the governing sixth-order PDE on a finite interval and compare it to the known infinite-line solution. Further, we propose a Galerkin spectral method based on the constructed sixth-order eigenfunctions and their derivative expansions. The system of ordinary differential equations for the time-dependent expansion coefficients is solved by standard numerical methods. The numerical approach is applied to versions of the governing PDE with a second-order spatial derivative (in addition to the sixth-order one), which arises from gravity acting on the film. In the absence of gravity, we demonstrate the self-similar intermediate asymptotics of initially localized disturbances on the film surface, at least until the disturbances “feel” the finite boundaries, and show that the derived Green’s function is an attractor for such solutions. In the presence of gravity, we use the proposed Galerkin numerical method to demonstrate that self-similar behavior persists, albeit for shortened intervals of time, even for large values of the gravity-to-bending ratio.more » « lessFree, publicly-accessible full text available February 1, 2026
-
We develop a theory of fluid--structure interaction (FSI) between an oscillatory Newtonian fluid flow and a compliant conduit. We consider the canonical geometries of a 2D channel with a deformable top wall and an axisymmetric deformable tube. Focusing on the hydrodynamics, we employ a linear relationship between wall displacement and hydrodynamic pressure, which has been shown to be suitable for a leading-order-in-slenderness theory. The slenderness assumption also allows the use of lubrication theory, and the flow rate is related to the pressure gradient (and the tube/wall deformation) via the classical solutions for oscillatory flow in a channel and in a tube (attributed to Womersley). Then, by two-way coupling the oscillatory flow and the wall deformation via the continuity equation, a one-dimensional nonlinear partial differential equation (PDE) governing the instantaneous pressure distribution along the conduit is obtained, without \textit{a priori} assumptions on the magnitude of the oscillation frequency (\textit{i.e.}, at arbitrary Womersley number). We find that the cycle-averaged pressure (for harmonic pressure-controlled conditions) deviates from the expected steady pressure distribution, suggesting the presence of a streaming flow. An analytical perturbative solution for a weakly deformable conduit is obtained to rationalize how FSI induces such streaming. In the case of a compliant tube, the results obtained from the proposed reduced-order PDE and its perturbative solutions are validated against three-dimensional, two-way-coupled direct numerical simulations. We find good agreement between theory and simulations for a range of dimensionless parameters characterizing the oscillatory flow and the FSI, demonstrating the validity of the proposed theory of oscillatory flows in compliant conduits at arbitrary Womersley number.more » « less
-
Experiments have shown that flow in compliant microchannels can become unstable at a much lower Reynolds number than the corresponding flow in a rigid conduit. Therefore, it has been suggested that the wall's elastic compliance can be exploited towards new modalities of microscale mixing. While previous studies mainly focused on the local instability induced by the fluid–structure interactions (FSIs) in the system, we derive a one-dimensional (1-D) model to study the FSI's effect on the global instability. The proposed 1-D FSI model is tailored to long, shallow rectangular microchannels with a deformable top wall, similar to the experiments. Going beyond the usual lubrication flows analysed in these geometries, we include finite fluid inertia and couple the reduced flow equations to a novel reduced 1-D wall deformation equation. Although a quantitative comparison with previous experiments is difficult, the behaviours of the proposed model show, qualitatively, agreement with the experimental observations, and capture several key effects. Specifically, we find the critical conditions under which the inflated base state of the 1-D FSI model is linearly unstable to infinitesimal perturbations. The critical Reynolds numbers predicted are in agreement with experimental observations. The unstable modes are highly oscillatory, with frequencies close to the natural frequency of the wall, suggesting that the observed instabilities are resonance phenomena. Furthermore, during the start-up from an undeformed initial state, self-sustained oscillations can be triggered by FSI. Our modelling framework can be applied to other microfluidic systems with similar geometric scale separation under different operating conditions.more » « less
-
We study the dynamics of a ferrofluid thin film confined in a Hele-Shaw cell, and subjected to a tilted non-uniform magnetic field. It is shown that the interface between the ferrofluid and an inviscid outer fluid (air) supports travelling waves, governed by a novel modified Kuramoto–Sivashinsky-type equation derived under the long-wave approximation. The balance between energy production and dissipation in this long-wave equation allows for the existence of dissipative solitons. These permanent travelling waves’ propagation velocity and profile shape are shown to be tunable via the external magnetic field. A multiple-scale analysis is performed to obtain the correction to the linear prediction of the propagation velocity, and to reveal how the nonlinearity arrests the linear instability. The travelling periodic interfacial waves discovered are identified as fixed points in an energy phase plane. It is shown that transitions between states (wave profiles) occur. These transitions are explained via the spectral stability of the travelling waves. Interestingly, multi-periodic waves, which are a non-integrable analogue of the double cnoidal wave, are also found to propagate under the model long-wave equation. These multi-periodic solutions are investigated numerically, and they are found to be long-lived transients, but ultimately abruptly transition to one of the stable periodic states identified.more » « less
An official website of the United States government
